deterministic transition function approximator object for neural network-pg电子麻将胡了
deterministic transition function approximator object for neural network-based environment
since r2022a
description
when creating a neural network-based environment using rlneuralnetworkenvironment, you can specify deterministic transition function
approximators using rlcontinuousdeterministictransitionfunction
objects.
a transition function approximator object uses a deep neural network to predict the next observations based on the current observations and actions.
to specify stochastic transition function approximators, use rlcontinuousgaussiantransitionfunction objects.
creation
syntax
description
creates a deterministic transition function approximator object using the deep neural
network tsnfcnappx = rlcontinuousdeterministictransitionfunction(net,observationinfo,actioninfo,name=value)net and sets the observationinfo and
actioninfo properties.
when creating a deterministic transition function approximator you must specify the
names of the deep neural network inputs and outputs using the
observationinputnames, actioninputnames, and
nextobservationoutputnames name-value pair arguments.
you can also specify the predictdiff and
usedevice properties using optional name-value pair arguments. for
example, to use a gpu for prediction, specify usedevice="gpu".
input arguments
properties
object functions
rlneuralnetworkenvironment | environment model with deep neural network transition models |
examples
version history
introduced in r2022a
