estimate efficient frontiers for portfolio object
whereas focused on estimation of efficient
portfolios, this section focuses on the estimation of efficient frontiers. for
information on the workflow when using portfolio objects, see .
obtaining portfolio risks and returns
given any portfolio and, in particular, efficient portfolios, the functions
, , and provide
estimates for the return (or return proxy), risk (or the risk proxy), and, in the
case of mean-variance portfolio optimization, the moments of expected portfolio
returns. each function has the same input syntax but with different combinations of
outputs. suppose that you have this following portfolio optimization problem that
gave you a collection of portfolios along the efficient frontier in
pwgt:
m = [ 0.05; 0.1; 0.12; 0.18 ];
c = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
p = portfolio('assetmean', m, 'assetcovar', c, 'initport', pwgt0);
p = setdefaultconstraints(p);
pwgt = estimatefrontier(p);
pwgt0 and pwgt, use the portfolio risk
and return estimation functions to obtain risks and returns for your initial
portfolio and the portfolios on the efficient
frontier:[prsk0, pret0] = estimateportmoments(p, pwgt0); [prsk, pret] = estimateportmoments(p, pwgt);
or
prsk0 = estimateportrisk(p, pwgt0); pret0 = estimateportreturn(p, pwgt0); prsk = estimateportrisk(p, pwgt); pret = estimateportreturn(p, pwgt);
display(prsk0) display(pret0) display(prsk) display(pret)
prsk0 =
0.1103
pret0 =
0.0870
prsk =
0.0769
0.0831
0.0994
0.1217
0.1474
0.1750
0.2068
0.2487
0.2968
0.3500
pret =
0.0590
0.0725
0.0859
0.0994
0.1128
0.1262
0.1397
0.1531
0.1666
0.1800
the returns and risks are at the periodicity of the moments of asset returns so
that, if you have values for assetmean and
assetcovar in terms of monthly returns, the estimates for
portfolio risk and return are in terms of monthly returns as well. in addition, the
estimate for portfolio risk in the mean-variance case is the standard deviation of
portfolio returns, not the variance of portfolio returns.
see also
| | |